The most versatile and powerful technique for the separation of key compounds in the pharmaceutical industry is liquid chromatography. A limitation of this technique is that high efficiencies can be obtained only for low sample concentrations. For high concentrations leading to overloading, an undesired concentration shock arises, which will either broaden the component zone downstream (Langmuir or L-behavior) or upstream (anti-Langmuir or AL behavior). In chromatography, analytes need to be in selective interaction with a stationary phase. When there is insufficient surface on this stationary phase, the analytes migrate downstream the channel in the mobile phase until a free interaction site is found. Because the migration distance is longer under overloading conditions, considerable dilution occurs compared to a non-overloading situation, resulting in a non-symmetrical peak either at the right (Langmuir) or the left (Anti-Langmuir) of the (space-based) peak. This sample band gets wider and wider until the concentration has dropped to a value at which sufficient interaction surface is available.